DNA mitokondria, Berbeda dengan organel sel lainnya, mitokondria memiliki materi genetik sendiri yang karakteristiknya berbeda dengan materi genetik di inti sel. Mitokondria, sesuai dengan namanya, merupakan rantai DNA yang terletak di bagian sel yang bernama mitokondria. DNA mitokondria memiliki ciri-ciri yang berbeda dari DNA nukleus ditinjau dari ukuran, jumlah gen, dan bentuk. Di antaranya adalah memiliki laju mutasi yang lebih tinggi, yaitu sekitar 10-17 kali DNA inti [Wallace et al., 1997]. Selain itu DNA mitokondria terdapat dalam jumlah banyak (lebih dari 1000 kopi) dalam tiap sel, sedangkan DNA inti hanya berjumlah dua kopi. DNA inti merupakan hasil rekombinasi DNA kedua orang tua sementara DNA mitokondria hanya diwariskan dari ibu (maternally inherited) [Browning, et al., 1979, Giles et al.,1980].

Besar genom pada DNA mitokondria relatif kecil apabila dibandingkan dengan genom DNA pada nukleus. Ukuran genom DNA mitokondria pada tiap tiap organisme sangatlah bervariasi. Pada manusia ukuran DNA mitokondria adalah 16,6 kb, sedangkan pada Drosophila melanogaster kurang lebih 18,4 kb. Pada khamir, ukuran genom relatif lebih besar yaitu 84 kb.

Tidak seperti DNA nukleus yang berbentuk linear, mtDNa berbentuk lingkaran. Sebagian besar mtDNA membawa gene yang berfungsi dalam proses respirasi sel. Eksperimen yang dilakukan dengan menghilangkan mtDNA pada S. cerevisceae menunjukan penurunan tingkat pertumbuhan yang signifikan yang ditandai dengan mengecilnya ukuran sel.

[sunting] Struktur DNA Mitokondria

DNA mitokondria (mtDNA) berukuran 16.569 pasang basa dan terdapat dalam matriks mitokondria, berbentuk sirkuler serta memiliki untai ganda yang terdiri dari untai heavy (H) dan light (L). Dinamakan seperti ini karena untai H memiliki berat molekul yang lebih besar dari untai L, disebabkan oleh banyaknya kandungan basa purin [Anderson et al., 1981].

MtDNA terdiri dari daerah pengode (coding region)dan daerah yang tidak mengode (non-coding region). MtDNA mengandung 37 gen pengode untuk 2 rRNA, 22 tRNA, dan 13 polipeptida yang merupakan subunit kompleks enzim yang terlibat dalam fosforilasi oksidatif, yaitu: subunit 1, 2, 3, 4, 4L, 5, dan 6 dari kompleks I, subunit b (sitokrom b) dari kompleks III, subunit I, II, dan III dari kompleks IV (sitokrom oksidase) serta subunit 6 dan 8 dari kompleks V. Kebanyakan gen ini ditranskripsi dari untai H, yaitu 2 rRNA,14 dari 22 tRNA dan 12 polipeptida. MtDNA tidak memiliki intron dan semua gen pengode terletak berdampingan [Anderson et al., 1981, Wallace et al., 1992, Zeviani et al., 1998]. Sedangkan protein lainnya yang juga berfungsi dalam fosforilasi oksidatif seperti enzim-enzim metabolisme, DNA dan RNA polimerase, protein ribosom dan mtDNA regulatory factors semuanya dikode oleh gen inti, disintesis dalam sitosol dan kemudian diimpor ke organel [Wallace et al., 1997].

Daerah yang tidak mengode dari mtDNA berukuran 1122 pb, dimulai dari nukleotida 16024 hingga 576 dan terletak diantara gen tRNApro dan tRNAphe. Daerah ini mengandung daerah yang memiliki variasi tinggi yang disebut displacement loop (D-loop). D-loop merupakan daerah beruntai tiga (tripple stranded) untai ketiga lebih dikenal sebagai 7S DNA. D-loop memiliki dua daerah dengan laju polymorphism yang tinggi sehingga urutannya sangat bervariasi antar individu, yaitu Hypervariable I (HVSI) dan Hypervariable II (HVSII). Daerah non-coding juga mengandung daerah pengontrol karena mempunyai origin of replication untuk untai H (OH) dan promoter transkripsi untuk untai H dan L (PL dan PH) [Anderson et al., 1981]. Selain itu, daerah non-coding juga mengandung tiga daerah lestari yang disebut dengan conserved sequence block (CSB) I, II, III. Daerah yang lestari ini diduga memiliki peranan penting dalam replikasi mtDNA.

[sunting] Daerah Hipervariabel DNA Mitokondria

Daerah kontrol memiliki tingkat mutasi dan polymorphism yang paling tinggi di dalam genom DNA mitokondria. Pada daerah D-loop terdapat hipervariabel 1 (HV1) dan hipervariabel 2 (HV2). Hypervariable I (HVSI) pada urutan nukleotida 16024-16383 dan Hypervariable II (HVSII) yang terletak pada nukleotida 57-372. Dua daerah ini memiliki laju mutasi yang lebih tinggi dari daerah pengode [Howell et al., 1996]. Oleh karena sifatnya yang polimorfik, daerah ini sangat beragam antar individu tetapi sama untuk kerabat yang satu garis keturunan ibu. Laju mutasi sejauh ini diketahui 1:33 generasi, jadi perubahan urutan nukleotida hanya akan terjadi setiap 33 generasi [Hall, 1998]. Oleh karena itu, daerah ini sering dianalisis dan sangat penting untuk digunakan dalam proses identifikasi individu.

[sunting] Sifat-sifat DNA Mitokondria

MtDNA diwariskan secara maternal [Browning, et al., 1979, Giles et al.,1980]. Sel telur memiliki jumlah mitokondria yang lebih banyak dibandingkan sel sperma, yaitu sekitar 100.000 molekul sedangkan sel sperma hanya memiliki sekitar 100-1500 mtDNA [Chen, et al., 1995b, Manfredi, et al., 1997]. Dalam sel sperma mitokondria banyak terkandung dalam bagian ekor karena bagian ini yang sangat aktif bergerak sehingga membutuhkan banyak ATP.

Pada saat terjadi pembuahan sel telur, bagian ekor sperma dilepaskan sehingga hanya sedikit atau hampir tidak ada mtDNA yang masuk ke dalam sel telur. Hal ini berarti bahwa sumbangan secara paternal hanya berjumlah 100 mitokondria. Apalagi dalam proses pertumbuhan sel, jumlah mtDNA secara paternal semakin berkurang. Maka jika dibandingkan dengan sumbangan secara maternal yaitu 100.000, maka sumbangan secara paternal hanya 0,01%. Oleh karena itu dapat dianggap tidak terjadi rekombinasi sehingga dapat dikatakan bahwa mtDNA bersifat haploid, diturunkan dari ibu ke seluruh keturunannya [Cann et al., 1987, Giles et al., 1980, Wallace, 1997].

DNA mitokondria juga memiliki sifat unik lainnya yaitu laju mutasinya yang sangat tinggi sekitar 10-17 kali DNA inti [Wallace et al., 1997]. Hal ini dikarenakan mtDNA tidak memiliki mekanisme reparasi yang efisien [Bogenhagen, 1999], tidak memiliki protein histon, dan terletak berdekatan dengan membran dalam mitokondria tempat berlangsungnya reaksi fosforilasi oksidatif yang menghasilkan radikal oksigen sebagai produk samping [Richter, 1988]. Selain itu, DNA polimerase yang dimiliki oleh mitokondria adalah DNA polimerase γ yang tidak mempunyai aktivitas proofreading (suatu proses perbaikan dan pengakuratan dalam replikasi DNA). Tidak adanya aktivitas ini menyebabkan mtDNA tidak memiliki sistem perbaikan yang dapat menghilangkan kesalahan replikasi. Replikasi mtDNA yang tidak akurat ini akan menyebabkan mutasi mudah terjadi.

Salah satu bentuk keunikan lainnya dari mitokondria adalah perbedaan kode genetik mitokondria menunjukkan perbedaan dalam hal pengenalan kodon universal. UGA tidak dibaca sebagai “berhenti” (stop) melainkan sebagai tryptofan, AGA dan AGG tidak dibaca sebagai arginin melainkan sebagai “berhenti”, AUA dibaca sebagai methionin [Anderson et al., 1981]

Dalya Rosner

How does DNA Fingerprinting Work?

…and what can it tell us about wine.

Genetic (DNA) fingerprinting

People everywhere expected the new millennium to bring surprises. But the particular shock and horror that rippled through the international viticulture community in 2000 was most unexpected. It had been found that sixteen of the most highly prized varieties of wine-making grapes were the product of mating between the classic Pinot and the classically undervalued Gouais grape.

This blew the proverbial cork off the industry because the Gouais was considered such an inferior specimen that there were even attempts to ban its cultivation in France during the Middle Ages. This proves that humble origins can still produce superior quality. More practically, though, knowledge of their heritage allows improved breeding of highly desirable subspecies of grape. And viticulturists everywhere had DNA fingerprinting technology to thank.

There are about 3 billion DNA letters in the human genome (genetic  blueprint). But only about 1% of those DNA letters differ between  individuals. DNA (genetic) fingerprinting exploits the differences in  that 1% to tell people apart.DNA fingerprinting is a term that has been bandied about in the popular media for about fifteen years, largely due to its power to condemn and save, but what does it involve? In short, it is a technique for determining the likelihood that genetic material came from a particular individual or group. 99% of human DNA is identical between individuals, but the 1% that differs enables scientists to distinguish identity. In the case of the grapes, scientists compared the similarities between different species and were able to piece together parent subspecies that could have contributed to the present prize-winning varieties.

The DNA alphabet is made up of four building blocks – A, C, T and G, called base pairs, which are linked together in long chains to spell out the genetic words, or genes, which tell our cells what to do. The order in which these 4 DNA letters are used determines the meaning (function) of the words, or genes, that they spell.

But not all of our DNA contains useful information; in fact a large amount is said to be “non-coding” or “junk” DNA which is not translated into useful proteins. Changes often crop up within these regions of junk DNA because they make no contribution to the health or survival of the organism. But compare the situation if a change occurs within an essential gene, preventing it from working properly; the organism will be strongly disadvantaged and probably not survive, effectively removing that altered gene from the population.

Genetic Fingerprints - DNA can be cut into shorter pieces by  enzymes called "restriction endonucleases". The pieces of DNA  can then be separated according to their size on a gel.

Left – DNA fingerprints from 6 different people, 1 in each lane (column).

DNA can be cut into shorter pieces by enzymes called “restriction endonucleases”. The pieces of DNA can then be separated according to their size on a gel.

Each piece of DNA forms a band (the white lines on the gel). The smallest pieces travel the furthest and are therefore clostest to the bottom of the gel. The larger pieces travel shorter distances and are closer to the top.

For this reason, random variations crop up in the non-coding (junk) DNA sequences as often as once in every 200 DNA letters. DNA fingerprinting takes advantage of these changes and creates a visible pattern of the differences to assess similarity.

Stretches of DNA can be separated from each other by cutting them up at these points of differences or by amplifying the highly variable pieces. ‘Bands’ of DNA are generated; the number of bands and their sizes give a unique profile of the DNA from whence it derived. The more genetic similarity between a person – or grape – the more similar the banding patterns will be, and the higher the probability that they are identical.

In the non-coding regions of the genome, sequences of DNA are  frequently repeated giving rise to so-called VNTRs - variable number  tandem repeats. These can be used to produce the genetic fingerprint.
In the non-coding regions of the genome, sequences of DNA are frequently repeated giving rise to so-called VNTRs – variable number tandem repeats. The number of repeats varies between different people and can be used to produce their genetic fingerprint. In the simple example shown above, person A has only 4 repeats whilst person B has 7. When their DNA is cut with the restriction enzyme Eco RI, which cuts the DNA at either end of the repeated sequence (in this example), the DNA fragment produced by B is nearly twice as big as the piece from A, as shown when the DNA is run on a gel (right). The lane marked M contains marker pieces of DNA that help us to determine the sizes. If lots of pieces of DNA are analysed in this way, a ‘fingerprint’ comprising DNA fragments of different sizes, unique to every individual, emerges.

But why bother? After all, I know where my wine comes from – Tesco’s, right? Well, there are many relevant applications of DNA fingerprinting technology in the modern world, and these fall into three main categories: To find out where we came from, discover what we are doing at the present, and to predict where we are going.

In terms of where we came from, DNA fingerprinting is commonly used to probe our heredity. Since people inherit the arrangement of their base pairs from their parents, comparing the banding patterns of a child and the alleged parent generates a probability of relatedness; if the two patterns are similar enough (taking into account that only half the DNA is inherited from each parent), then they are probably family. However, DNA fingerprinting cannot discriminate between identical twins since their banding patterns are the same. In paternity suits involving identical twins – and yes, there have been such cases – if neither brother has an alibi to prove that he could not have impregnated the mother, the courts have been known to force them to split child care costs. Thankfully there are other, less “Jerry Springer-esque”, applications that teach us about our origins. When used alongside more traditional sociological methodologies, DNA fingerprinting can be used to analyse patterns of migration and claims of ethnicity.

DNA Fingerprinting can also tell us about present-day situations. Perhaps best known is the use of DNA fingerprinting in forensic medicine. DNA samples gathered at a crime scene can be compared with the DNA of a suspect to show whether or not he or she was present. Databases of DNA fingerprints are only available from known offenders, so it isn’t yet possible to fingerprint the DNA from a crime scene and then pull out names of probable matches from the general public. But, in the future, this may happen if DNA fingerprints replace more traditional and forgeable forms of identification. In a real case, trading standards agents found that 25% of caviar is bulked up with roe from different categories, the high class equivalent of cheating the consumer by not filling the metaphorical pint glass all the way up to the top. DNA fingerprinting confirmed that the ‘suspect’ (inferior) caviar was present at the crime scene.

DNA fingerprinting using material collected at the scene of a  crime can be used to identify the guilty party (Gel electrophoresis  adapted from Iowa State University teaching materials). In the example shown on the left, DNA collected at the scene of a crime is compared with DNA samples collected from 4 possible suspects. The DNA has been cut up into smaller pieces which are separated on a gel. The fragments from suspect 3 match those left at the scene of the crime, betraying the gulty party.

Finally, genetic fingerprinting can help us to predict our future health. DNA fingerprinting is often used to track down the genetic basis of inherited diseases. If a particular pattern turns up time and time again in different patients, scientists can narrow down which gene(s), or at least which stretch(es) of DNA, might be involved. Since knowing the genes involved in disease susceptibility gives clues about the underlying physiology of the disorder, genetic fingerprinting aids in developing therapies. Pre-natally, it can also be used to screen parents and foetuses for the presence of inherited abnormalities, such as Huntington’s disease or muscular dystrophy, so appropriate advice can be given and precautions taken as needed.

Sebagai metode in vitro, PCR menggunakan dua primer oligonukleotida yang menghibridisasi pita yang berlawanan dan mengapit dua target DNA. Kesederhanaan dan tingginya tingkat kesuksesan amplifikasi sekuens DNA yang diperoleh, menyebabkan teknik ini semakin luas digunakan.

Pada dasarnya, reaksi PCR merupakan tiruan dari proses replikasi DNA in vivo, yakni melalui proses pembukaan rantai DNA utas ganda (denaturasi), penempelan primer (annealing), dan perpanjangan rantai DNA baru (extension) oleh DNA polimerase dari terminal 5′ ke 3′. Bedanya dengan replikasi in vivo, teknik ini tidak menggunakan enzim ligase dan primer RNA.

Secara sederhana, teknik PCR dilakukan dengan mencampurkan sampel DNA dengan primer oligonukleotida trifosfat (dNTP), enzim termostabil Taq DNA polimerase dalam larutan DNA yang sesuai ; dan kemudian menaikan dan menurunkan suhu campuran secara berulang dalam beberapa puluh siklus hingga akhirnya diperoleh jumlah sekuens DNA yang diinginkan.